Use of High-Strength Concrete in Low-Rise RC Shear Walls

Robert D. Devine, Steven M. Barbachyn, Ashley P. Thrall, Yahya C. Kurama

The College of Engineering at the University of Notre Dame

Project Objective

Reduce field construction times and fabrication costs of reinforced concrete nuclear structures through:

- 1) High-strength rebar
- 2) Prefabricated rebar assemblies, including headed anchorages
- 3) High-strength concrete

Project Scope

- Explore effectiveness, code conformity, and viability of <u>existing</u> high-strength materials
- Focus on stocky shear walls most common lateral load resisting members in nuclear structures (pressure vessels not in scope)
- Aim to reduce <u>complexities in rebar</u> to improve construction quality and ease of inspection

US-APWR Design Control Doc.

High-Strength Materials

- High-strength rebar (up to Grade 120) with highstrength concrete (up to 20 ksi compressive strength)
- Concrete strength of 5 ksi typical in current practice
- ACI 349 limits headed bars and shear reinforcement to Grade 60

Potential Benefits

ECOM

Outline

- 1. Numerical Modeling
- 2. Limit-Benefit Analysis
- 3. Cost-Benefit Analysis
- 4. Experimental Testing

1. Modeling Approach

- Evaluated methods for predicting peak lateral strength of low-aspect-ratio shear walls:
 - 1) Closed-form Methods
 - 2) Finite Element Modeling using VecTor2
 - 3) Finite Element Modeling using ATENA
- Compared predictions with measured strengths of 38 walls from 6 different experimental studies:
 - Study 1: normal-strength benchmark study
 - Study 2-6: high-strength materials utilized
 - Parameter range: $M/(VI_w) = 0.33 1.36$, $f'_c = 3.50 19.9$ ksi, $f_y = 50.3 - 205.9$ ksi

1. ACI and ASCE Code Equations

- Overestimate strength of rectangular walls without boundary regions (Study 1), indicating un-conservatism
- Underestimated strength of walls with boundary regions, barbells, or flanges (Studies 2-6), indicating over-conservatism

1. Other Closed-Form Equations

 Gulec and Whittaker (2011) provided best predictions, underestimating the strength of rectangular walls while slightly overestimating the strength of walls with boundary regions/members

1. VecTor2 Finite Element Model

- Reliably captures the peak strength for rectangular walls with a wide range of material properties and base moment-to-shear ratios
- Best predictor of walls with boundary regions, barbells, and flanges

1. ATENA Finite Element Model

Also reliably predicts the peak strength of rectangular walls

1. Comparison of Predictions

- Design equations should be revisited for highstrength materials
- VecTor2 and ATENA are reliable for predicting peak strength; ABAQUS will also be used.

Outline

1. Numerical Modeling

- 2. Limit-Benefit Analysis
- 3. Cost-Benefit Analysis
- 4. Experimental Testing

2. Limit-Benefit Analysis

Numerical <u>limit-benefit</u> study to establish effects of highstrength materials on peak lateral strength of low-aspectratio shear walls:

- Parametric numerical investigation of 192 walls
- Peak strength predicted via VecTor2 finite element model

Parameter	Wall 1	Wall 2	Wall 3
length, I _w (ft)	20	60	120
height <i>,</i> h _w (ft)	40	120	120
thickness, t _w (in.)	15	45	45
moment to shear ratio, M/(Vl _w)	0.5 , 1.0	0.5 , 1.0	0.5 , 1.0
concrete strength, f' _c (ksi)	5 , 10, 15, 20	5 , 10, 15, 20	5 , 10, 15, 20
rebar strength, f _v (ksi)	60 , 80, 100, 120	60 , 80, 100, 120	60 , 80, 100, 120
reinforcement ratio, ρ _s (%)	0.25 <i>, 0.50</i>	0.60, 1.20	0.60, 1.20

Wall 2 (60 ft x 120 ft x 45 in.):

 V_{wm} = Predicted peak lateral strength $V_{wm,b}$ = Predicted peak lateral strength of "benchmark" with normal strength materials

2. Limit-Benefit Summary

- Combination of high-strength rebar with high-strength concrete resulted in a higher-performing structure than with either high-strength material on its own
- Higher-strength concrete contributed more effectively at lower *M*/(*VI_w*) ratios; wall response was more dependent on rebar for larger *M*/(*VI_w*) ratios
- Significant benefits by using concrete strength of $f'_c = 10$ ksi, with diminishing returns for higher strengths
- Greatest benefits of high-strength materials for walls with large rebar ratios, ρ_s

Outline

- **1. Numerical Modeling**
- 2. Limit-Benefit Analysis
- 3. Cost-Benefit Analysis
- 4. Experimental Testing

3. Cost-Benefit Analysis

- Numerical <u>cost-benefit</u> study of economic effectiveness of high-strength materials for low-rise shear walls:
 - Parametric numerical investigation of 2304 walls
 - Construction cost metric (Γ) includes rebar material cost, rebar labor cost, and concrete material cost (C_w), normalized by peak strength (V_{wm}): $\Gamma = \frac{C_w}{V_{wm}}$

Parameter	Wall 1	Wall 2	Wall 3
length, l _w (ft)	20	60	120
height, h _w (ft)	40	120	120
thickness <i>,</i> t _w (in.)	10, 15 , 20	30, 45 , 60	30, 45 , 60
moment to shear ratio, M/(VI _w)	0.5 , 1.0	0.5 , 1.0	0.5 , 1.0
concrete strength, f' _c (ksi)	5 , 10, 15, 20	5 , 10, 15, 20	5 , 10, 15, 20
rebar strength, f _v (ksi)	60 , 80, 100, 120	60 , 80, 100, 120	60 , 80, 100, 120
reinforcement ratio, ρ _s (%)	low to high	low to high	low to high

Wall 2 (60 ft x 120 ft x 45 in.) with $M/(VI_w)=0.5$:

Wall 2 (60 ft x 120 ft x 45 in.) with $M/(VI_w)=1.0$:

Wall 2 (60 ft x 120 ft x 45 in.) with $M/(VI_w)=0.5$, rebar material costs:

$$\Gamma = \frac{C_w}{V_{wm}}$$

 Γ = Construction cost metric

 Γ_{b} = Construction cost metric of "benchmark" with normal-strength materials

 C_w = Total cost of rebar material, rebar labor, and concrete material

 V_{wm} = Predicted peak lateral strength

3. Cost-Benefit Summary

- Combination of high-strength rebar with highstrength concrete resulted in greatest economic benefits for walls with lower $M/(VI_w)$ ratios and large reinforcement ratios, ρ_s
- A concrete strength of f'_c =10 ksi showed the largest incremental reduction in construction cost; higher concrete strengths can increase normalized cost metric
- Rebar grades greater than 100 can lead to decreased economic benefits due to the increased unit cost

Outline

- **1. Numerical Modeling**
- 2. Limit-Benefit Analysis
- 3. Cost-Benefit Analysis
- 4. Experimental Testing

4. Experimental Testing

• "Generic wall" dimensions determined using publicly-available design control documents

4. Experimental Testing

• "Generic wall" dimensions determined using publicly-available design control documents

4. Pre-test Analyses

4. Test Setup

4. Specimen Construction

4. Concrete Mix Design

Constituents	Normal-Strength Concrete	High-Strength Concrete
Portland Cement Type I/II (lb/yd ³)	182	400
Ground granulated blast-furnace slag (lb/yd ³)	437	350
Silica Fume (lb/yd³)	0	50
Crushed Limestone (lb/yd ³) ^a	1745	1615
Fine Aggregate (lb/yd³)ª	1346	1353
Water (lb/yd ³) ^a	250	220
HRWR (fl. oz./cwt)	2.0	6.75
Water/Binder Ratio	0.41	0.28
Air Content	2.6%	1.5%
Slump (in)	8	8.75
Measured 28-day f' _c (psi)	6500	14960
Predicted Temp. Rise (°F)	85	110

^aWeights of aggregates and water reported as saturated surfaced dry weight and weight of water above SSD respectively.

4. Concrete Mix Design

Normal-Strength Concrete $f'_c = 6500 \text{ psi}$ slump = 8 in. High-Strength Concrete f'_c = 14960 psi slump = 8.75 in.

4. Test Parameters

Specimen	f' _c (psi)	f _y (ksi)	ρ _s (%)	M/(Vl _w)
DB1	6500	70	0.833	0.5
DB2	6500	133	0.833	0.5
DB3	14960	70	0.833	0.5
DB4	14960	133	0.833	0.5

Definitions: f'_c – concrete 28 day compressive strength

 f_y – rebar yield strength, determined by tensile tests and 0.2% offset method ρ_s – reinforcement ratio, symmetric for longitudinal and transverse rebar

4. Test Parameters

Specimen	f' _c (psi)	f _y (ksi)	ρ _s (%)	M/(VI _w)
DB1	6500	70	0.833	0.5
DB2	6500	133	0.833	0.5
	14960		0.833	0.5
DB4	14960	133	0.833	0.5

Definitions: f'_c – concrete 28 day compressive strength

 $f_y - rebar yield strength, determined by tensile tests and 0.2% offset method$ $<math>\rho_s - reinforcement ratio, symmetric for longitudinal and transverse rebar$

4. Conventional Instrumentation

Туре	Number
pressure transducer	2
string potentiometer	9
linear potentiometer	8
inclinometer	4
strain gauge	42
TOTAL	65

4. 3D Digital Image Correlation

4. 3D Digital Image Correlation

4. Specimen Response

4. DB2 ($f'_c = 6500 \text{ psi}, f_y = 133 \text{ ksi}$)

VIDEO, contact <u>ykurama@nd.edu</u> or <u>athrall@nd.edu</u> for more information

4. DB2 ($f'_c = 6500 \text{ psi}, f_y = 133 \text{ ksi}$)

VIDEO, contact ykurama@nd.edu or athrall@nd.edu for more information

4. DB4 ($f'_c = 14960 \text{ psi}, f_y = 133 \text{ ksi}$)

VIDEO, contact ykurama@nd.edu or athrall@nd.edu for more information

4. DB4 ($f'_c = 14960 \text{ psi}, f_y = 133 \text{ ksi}$)

VIDEO, contact ykurama@nd.edu or athrall@nd.edu for more information

4. DB4 ($f'_c = 14960 \text{ psi}, f_v = 133 \text{ ksi}$)

★ active tension strain

☆ tension yield (6.85 mε)

4. DB4 ($f'_c = 14960 \text{ psi}, f_v = 133 \text{ ksi}$)

4. DB4 ($f'_c = 14960 \text{ psi}, f_v = 133 \text{ ksi}$)

4. DB4 ($f'_c = 14960 \text{ psi}, f_v = 133 \text{ ksi}$)

4. DB4 ($f'_c = 14960 \text{ psi}, f_v = 133 \text{ ksi}$)

4. DB4 ($f'_c = 14960 \text{ psi}, f_v = 133 \text{ ksi}$)

4. DB4 ($f'_c = 14960 \text{ psi}, f_v = 133 \text{ ksi}$)

4. DB4 ($f'_c = 14960 \text{ psi}, f_v = 133 \text{ ksi}$)

4. Strain Comparisons

★ active tension strain★ tension yield (6.85 mε)

High-strength concrete able to better take advantage of higher yield strengths of reinforcement

4. Summary of Tests

- 17.6% increase in peak shear strength when increasing f'_c from 6500 psi to 14960 psi
- Significant increase in ductility due to increase in f'_c
- Pre-test analyses provided reasonable predictions for peak strength

Conclusions

- High-strength steel more effective when combined with high-strength concrete
 - Numerically demonstrated (economics and peak strength)
 - Measured experimentally
- Greatest benefit for walls with low moment-toshear ratios and large reinforcement ratios; typical of nuclear concrete shear walls
- Largest economic and structural benefits when using Grade 100 rebar together with 10 ksi concrete

Acknowledgements

- Department of Energy Award No. DE-NE0008432
- DOE Points of Contact: Alison Hahn, Jack Lance
- Integrated University Program Fellowship
- Matt Van Liew (AECOM)
- Scott Sanborn (Sandia National Laboratories)
- Material/Fabrication Donations:
 - MMFX Steel
 - Dayton Superior Corp.
 - HRC, Inc.
 - Sika Corp. U.S.

Questions?

http://phsrc-nuclearwalls.nd.edu

